
MRDB: A Multi-User Real-Time Database Testbed

Sang H. Son, Young-Kuk Kim, and Robert C. Beckinger
Dept. of Computer Science

University of Virginia
Charlottesville,

Abstract
Transactions in real-time database systems should

be scheduled considering both data consistency and tim-
ing constraints. In addition, a real-time database must
adapt to changes in the operating environment and guar-
antee the completion of critical tasks. The effects of
scheduling decisions and concurrency control mecha-
nisms for real-time database systems have typically been
demonstrated in a simulated environment. In this paper
we present a functional real-time relational database
manager, called MRDB, which provides an operational
platform for research in real-time database issues. Cur-
rent research issues involving the development of run-
time estimates for use in scheduling decisions, temporal
consistency characteristics, and our efforts in using these
are also discussed.

1. Introduction
Real-time database systems have (at least some)

transactions with explicit timing constraints such as
deadlines.The correctness of the system depends not
only on the logical results but also on the time within
which the results are produced. In a real-time database
system, transactions must be scheduled in such a way
that they can be completed before their corresponding
deadlines expire. Real-time databases are essential for
applications that are both data intensive and subject to
real-time constraints, such as defense systems, industrial
automation, aerospace and network management
[Son88]. Appropriate methods and techniques for
designing and implementing database systems that take
timing constraints into account are playing an ever
increasing role in determining the success or failure of
real-time systems. In recent workshops [IEEE93,
RTA931, developers of real-time systems have pointed to
the need for basic research in database systems that sat-
isfy timing constraint requirements in collecting, updat-
ing, and retrieving shared data.

Real-time database systems have many similari-
ties with conventional database management systems
and with conventional real-time systems. They fall in the
intersection between the two types of systems, and is not
quite the same as either one of the two. Real-time data-
base systems must process transactions and guarantee

This work was supported in part by ONR, by CIT,
by DOE, and by IBM.

1060-3425/94 $3.00 0 1994 IEEE

VA 22903, USA

that database consistency is not violated just as in a con-
ventional database system. Conventional database sys-
tems, however, do not stress the notion of time
constraints or deadlines with respect to transactions.
Individual temporal constraints are not taken into
account when making scheduling decisions. The perfor-
mance goal for conventional database systems is usually
expressed in terms of minimizing average response times
instead of constraints on individual transactions.

Conventional real-time systems do take transac-
tion temporal specifications into account, but ignore data
consistency issues. Real-time systems also typically
work with processes which have predictable resource
requirements, to include data requirements. Database
systems tend to make unpredictable data accesses. This
exasperates the scheduling problem, and highlights
another difference between a conventional real-time sys-
tem and a real-time database system. The conventional
real-time system attempts to ensure that no temporal con-
straints are violated. In real-time database systems, it is
impossible to guarantee all temporal constraints because
of the unpredictable data accesses, so the system must
strive to minimize the number of constraints which are
violated [Abb92, Kim93, Son931.

State-of-the-art database systems are typically not
used in real-time applications due to two major inade-
quacies: lack of predictability and poor performance
[Son90]. Current database systems do not schedule their
transactions to meet response requirements and they
commonly lock data objects to assure the consistency of
the database. The problem is that locks and time-driven
scheduling are incompatible. Low priority transactions
can and will block higher priority transactions leading to
priority inversions and response requirement failures.
Recently, a considerable research effort has been focused
on real-time database scheduling and data consistency
control mechanisms. The integration of the two in real-
time database systems is not trivial, because all existing
concurrency control methods synchronize concurrent
data accesses by the combination of two measures; block
and rollback, both of which create barriers for time-crit-
ical scheduling. Concurrency control mechanisms such
as Priority inheritance, Priority ceiling protocol, Opti-
mistic protocols, and Conditional restart have been stud-
ied and implemented in an attempt to manage the
integration of real-time scheduling and data consistency
requirements in real-time databases [Abb89, Car89,
Har90, Hua90, Sha911. They are typically compatible
with time-driven scheduling, and meet both the required

543 Proceedings of the Twentyseventh Annual Hawaii
International Conference on System Sciences, 1994

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1994 2. REPORT TYPE

3. DATES COVERED
 00-00-1994 to 00-00-1994

4. TITLE AND SUBTITLE
MRDB: A Multi-User Real-Time Database Testbed

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

system response predictability and temporal consistency.
The design and evaluation of real-time database

systems presents challenging problems. In this paper we
describe a functional multi-user real-time relational
database system (MRDB), which we have developed for
exploring real-time database issues. In addition, we
examine issues involving the development of credible
run-time estimates for use in real-time database schedul-
ing decisions, the integration of data and temporal func-
tionality, and the use of temporal consistency
specifications in performing database operations. The
remainder of the paper is organized as follows. Section
2 provides the reader with information on temporal con-
straint issues and temporal functionality which were
sought in the design of MRDB. Section 3 describes our
multi-user real-time database server and the environment
in which i t operates. Section 4 presents real-time sched-
uling policies that are implemented in MRDB, our deri-
vation and use of run-time estimates and initial run-time
performance measurements. Finally, Section 5 summa-
rizes the paper and the areas of future work.

2. Temporal Functionality and Issues
One of the major goals in designing real-time

database systems is to meet timing constraints. It is also
one of the major problems when designing a real-time
scheduler which attempts to minimize the probability of
transactions failing to meet their respective deadlines.
Various approaches have been investigated to develop
database systems to achieve this goal. The designers of
CASE-DB [O Z S O ~ ~] used an iterative evaluation tech-
nique coupled with a risk probability attribute in an
attempt to provide as much information as possible
within a given deadline. The priority ceiling protocol,
which was initially developed as a task scheduling proto-
col for real-time operating systems, has been extended
for use in RTDBS [Sha91]. It is based on a two-phase
locking protocol and employs blocking, versus rollback,
in an attempt to minimize the number of transactions that
fail to meet their deadline. Protocols to schedule real-
time transactions using the concept of dynamically
adjusting the serialization order have been developed
and evaluated [Lee93, Lin90, Son921.

Those approaches attempt to make scheduling
decisions based mainly on transaction attributes such as
priority, release time and deadline. These transaction
characteristics are critical pieces in the scheduling puz-
zle, but they are not the only attributes available for use
in solving the problem. One key attribute absent from
most scheduling decisions is a viable transaction run-
time estimate. Numerous research efforts have explored
the possibility of using run-time estimates in the sched-
uling decision process. Run-time estimates have been
used in workload policies, priority assignment policies,
conflict resolution policies and IO scheduling policies.
These run-time estimates have typically been model-
driven. The results derived have shown that run-time
estimates are a credible option for use in scheduling deci-
sions. However, the derivation and use of run-time esti-
mates in a functional real-time database has not been
explored extensively. Schedulers which do not incorpo-
rate run-time estimates into account are failing to use a

key attribute which can simplify the scheduling decision.
Scheduling decisions which do not take computation
requirements into account allow such occurrences as
processor time to be expended upon transactions which
cannot meet their deadlines.

If the real-time database scheduler can be pro-
vided with an estimate of transaction execution time, that
information can be used in determining which transac-
tion is closest to missing a deadline, and hence should be
given higher priority, or which transaction can be
delayed without risking violation of their timing con-
straints. In addition, run-time estimates can be used by
the scheduler to initially screen transactions to determine
eligibility. All transactions with feasible deadlines
(release time plus run-time estimate is less than deadline)
remain in the system and are eligible for service, while
all ineligible transactions are aborted.

We sought predictability and accuracy in explor-
ing the feasibility of using run-time estimates in schedul-
ing decisions for real-time database systems. Without a
predictable and accurate run-time estimate, little can be
gained in the scheduling decision cycle, while leaving
the system susceptible to unpredictable behavior. That is
not to say that run-time estimates have to be correct
100% of the time, since the typical real-time database
performance goal is usually expressed in terms of mini-
mizing missed deadlines, not guaranteeing no missed
deadlines. However, because of their serious impact on
scheduling decisions, the run-time estimates must be
both predictable and reliable [Kim93].

Often a significant portion of a real-time database
is highly perishable in the sense that it has value only if
it is used in time. In addition to deadlines, therefore,
other kinds of temporal information should be associated
with data as well as transactions in a real-time database
system. For example, each sensor input could be
indexed by the time at which i t was taken. Once entered
in the database, data may become out-of-date if i t is not
updated within a certain period of time. To quantify this
notion of age, data may be associated with a valid inter-
val. The valid interval indicates the time interval after
the most recent updating of a data object during which a
transaction may access it with 100% degree of accuracy.
What occurs when a transaction attempts to access a data
object outside of its valid interval is dependent upon the
semantics of data objects and the particular implementa-
tion. For some data objects, for instance, reading it out
of its valid interval would result in 0% accurate values.
In general, each data object can be associated with a
validity curve that represents its degree of validity with
respect to the time elapsed after the data object was last
modified. The system can compute the validity of data
objects at the given time, provided the time of last mod-
ification and its validity curve [Liu88, Son91].

A real-time transaction should include its tempo-
ral consistency requirement which specifies the validity
of data values accessed by the transaction. For example,
if the temporal consistency requirement is 10, it indicates
that data objects accessed by the transaction cannot be
older than 10 time units relative to the start time of the
transaction. This temporal consistency requirement can
be specified as either hard or soft, just as deadlines are.
If it is hard, an attempt to read an invalid dataobject (i.e.,

544

out of its valid interval) will cause the transaction to be
aborted.

a substitute for functional systems. They fail to account
for all factors found in an operational system, and tend to

While a deadline can be thought of as providing a
time interval as a constraint in the future, temporal con-
sistency specifies a temporal window as a constraint in
the past. As long as the temporal consistency require-
ment of a transaction can be satisfied, the system must be
able to provide an answer using available (may not be
up-to-date) information. The answer may change as
valid intervals change with time. In a distributed data-
base system, sensor readings may not be reflected to the
database at the same time, and may not be reflected con-
sistently due to the delays in processing and communica-
tion. A temporal data model for real-time database
systems must therefore be able to accommodate the
information that is partial and out-of-date. One of the
aspects that distinguishes a temporal data model for a
real-time database systems from that of conventional
database systems is that values in a real-time database
system are not necessarily correct all the time, and hence
the system must be selective in interpreting data values.

Another design goal of real-time database systems
is to enhance the temporal functionality associated with
the data stored within the database. Temporal informa-
tion has been stored in conventional databases for many
years; accounting and payroll systems are typical exam-
ples. In these systems the attributes involving time are
manipulated solely by the application programs. None
of these systems interpret temporal domains when deriv-
ing new relations or extracting data. Most conventional
database systems represent the state of an enterprise at a
single moment of time. Although the contents of the
database continue to change as new information is
added, these changes have typically been viewed as
modifications to the state, with the old, out-of-date data
being deleted from the database. The new state also does
not necessarily reflect the current status of the real world,
since changes to the database always lag behind changes
in the real world [Sno87].

3. Implementation of MRDB
MRDB is a functionally complete relational data-

base manager. It offers not only a functionally complete
set of relational operators such as project, select, join,
union and set difference, and aggregate operators such as
max, min, avg, count and sum, but also other necessary
relational operators such as create, insert, update, delete,
rename, compress, extract, import, export, sort, and
print. These operators give the user a fair amount of rela-
tional power and convenience for managing the data-
base.

MRDB is designed along the traditional client-
server paradigm. It has a multiple-threaded server that is
capable of accepting MRDB commands from multiple
client sites. MRDB was designed with the goal of pro-
viding a temporal platform for conducting research on
real-time database issues. It allow us to analyze real-
time database mechanisms in an operational environ-
ment. This is a major and natural step forward from per-
formance analysis conducted in a simulated real-time
database environment. Simulated environments are not

be more subjective in the sense that system parameters
can be readily modified. An operational system cannot
be modified to fit the real-time mechanism being ana-
lyzed. The results derived from an operational real-time
database system provide us with a set of more realistic
performance measurements.

The MRDB server is the heart of the database
management system. It is responsible for receiving and
acting on requests from multiple clients, and returning
desired information to the clients. The server contains
an infinite loop that accepts high-level database requests
(e.g., create, union, insert) from multiple clients. The
requests come in as packets. The MRDB system pro-
vides two different types of packets: call packets and
return packets. The call packet is created by the client
and is the database transaction. The call packet contains
all the information that the server needs to carry out the
desired database access operation, to include the timing
constraint and temporal consistency specifications asso-
ciated with the transaction. Clients are able to specify
timing constraints and temporal consistency specifica-
tions for each transaction submitted to the server thread.
A different timing constraint can be specified for each
transaction submitted, or the client can use the default
timing constraint previously established. The MRDB cli-
ent thread passes the call packet forward to the MRDB
server. The server performs some preprocessing and then
forwards the packet to the MRDB scheduler.

The MRDB scheduler uses a run-time estimate
evaluation technique to determine if the system can pro-
vide the client with the information requested within the
timing constraint specified. The MRDB server will spin-
off a separate MRDB thread to execute the transaction if
the scheduler makes the determination that a transaction
can be computed within the given deadline. No thread
spun-off will occur if the MRDB scheduler determines
that the transaction cannot be completed within the spec-
ified timing constraint. The thread will execute until
completion and then forward the call packet back to the
client. The client thread will process the return packet
accordingly. A transaction is not preempted by the
MRDB thread even if the determination has been made
that a deadline is missed. The fact that a transaction has
missed its deadline will be reported to the client, along
with the results of the transaction.

MRDB also associates a temporal ‘valid time’
attribute with each relation created in MRDB. This is
inherent to the system, requiring no client involvement.
The temporal attribute is attached to each tuple of a rela-
tion and is comparable to a timestamp that represents the
valid time that the stored information models reality. The
client cannot set or modify the values associated with the
valid time attribute. However, this attribute can be
manipulated for use in specifying transaction temporal
consistency requirements. For example,

select trk-num from trackfile where valid time < 1

will return only the track numbers (trk-num) of tuples
inserted or updated in the database relation (trackfile)

545

within the last second of the transaction release time.
Track numbers with valid time attribute values older than
a second are active within the relation, but do not satisfy
the temporal consistency requirement specified. MRDB
also allows users of the system to manipulate the valid
time attribute in output displays and in creating and
manipulating relations that are similar to those found in
historical temporal database systems [Sno87]. A rela-
tion without the temporal attribute valid time attribute
can be formed by projecting or selecting attributes other
than valid time into a new relation. The MRDB system
will process such relations without attaching any tempo-
ral meaning to them.

The MRDB system employs a strict two-phase
locking (2PL) protocol for concurrency control [Ber87].
The strict locking protocol was selected for concurrency
control because of its prevalence in commercial applica-
tions system and because of its desirable characteristic of
being recoverable and avoiding cascaded aborts. Fur-
thermore, abort can be implemented by simply restoring
before images. Numerous conflict resolution policies
such as High Priority, Priority Inheritance, Priority Ceil-
ing and Conditional Priority Inheritance have been stud-
ied extensively in conjunction with a locking protocol
environment [Abb89, Abb92, Hua90, Lin89, Sha88,
Sha911. The results indicate that such conflict resolution
policies are compatible with time-driven scheduling, and
meet both the required goals of system response predict-
ability and temporal consistency. The area of conflict
resolution policies, a significant area with respect to the
scheduling of transactions in a manner which minimizes
missed deadlines, is an ongoing area of research within
MRDB, and is not addressed further in this paper.

A MRDB transaction is characterized by its tim-
ing constraints and its computation requirements. The
timing constraints are a release time ‘r’ and deadline ‘d’.
The release time is the time associated with the transmit-
tal of the transaction by a client site. A computation
requirement is represented by a run-time estimate ‘rte’
which approximates the amount of computation, IO, and
communication costs associated with processing a trans-
action. The deadline corresponds to the client-specified
timing constraint.

time + ;t

The release time and deadline are known to the
MRDB scheduler when a transaction arrives. The com-
putation requirements are calculated based on the opera-
tion being performed and the physical characteristics of
the data involved. This information is made available
prior to the scheduling decision being made. We think it
is viable to estimate the execution time of a transaction
without having prior knowledge of the exact data access
pattern of a transaction.

The goal of our system is to minimize the number
of transactions that miss their deadlines, i.e., that finish
after time ‘d’. If transactions can miss deadlines, one

must address the issue as to what happens to transactions
that have already missed their deadlines but have not yet
finished. There are two alternatives. One is to assume
that a transaction that has missed its deadline can be
aborted. This may be reasonable where the value of a
transaction is dependent on the timeliness of the return
response. For example, suppose that a transaction is sub-
mitted to update the ballistic path of a projectile based on
a radar sensing. If the deadline is missed, it may be more
desirable not to perform the operation of updating the
ballistic path, but instead to re-submit the update request
based on a newer sensor reading. The conditions that led
to the triggering of the transaction may have changed.
The initiator of the transaction may be better served if the
transaction is re-submitted.

A second option is to assume that all transactions
must eventually be completed, regardless of whether
they have missed their deadlines. This may be a correct
approach in an application such as banking where a cus-
tomer would rather have his financial transaction done
late rather than not at all. If the decision is made to pro-
cess the transaction, there is still the issue of the priority
of tardy transactions with respect to other transactions in
the system. Transactions which cannot meet their dead-
lines could receive a higher priority as their lateness
increases, or they could be postponed to a later more con-
venient time.

The MRDB implementation decision was a com-
bination of the two approaches. When a transaction
enters the system, a determination is made as to whether
a transaction can be executed within the temporal con-
straint associated with it. If the transaction cannot meet
its deadline, it is aborted. This has the nice property of
not allowing computation time to be expended on trans-
actions which cannot meet their deadlines, even with the
best effort. To allow such transactions into the system
can adversely affect overall system performance espe-
cially during high load periods. Aborting a few late
transactions helps all other transactions meet their dead-
lines, by eliminating the competition for resources by
tardy transactions. Once a transaction has been accepted
for processing, it is executed to completion, regardless as
to whether or not a deadline has been met. This approach
was adopted as a means of validating the run-time esti-
mates derived by the scheduler.

The MRDB system has been developed on Sun
workstations under the Unix operating system. MRDB
is written in C and designed to operate across a local area
network, with multiple client nodes accessing the cen-
tralized database maintained by the system. MRDB was
designed for Unix because of the prevalence of the oper-
ating system. MRDB has the nice property of being
readily ported to other Unix sites interested in real-time
database research. An argument can be made that real-
time database operations need to be coherent with the
operating system, because correct functioning and tim-
ing behavior of database control algorithms depend on
the services of the underlying operating system. We
agree that Unix is not ideal to support predictable trans-
action processing. We have found, however, through our
performance analysis of MRDB, that dedicated
resources in an environment such as above can provide
reasonably analyzable and meaningful results.

546

4.Scheduling Policies and Run-Time Estimates

r

Time Continuous LS Static LS
s = d-(t+rte-p) s = d-(t+rte)

The MRDB scheduling algorithms have three
components: a policy to determine which tasks are eligi-
ble for service, a policy for assigning priorities to tasks,
and a conflict resolution policy. Only the first two poli-
cies are explored in the remainder of this paper.

0

1

4.1. Scheduling Policies
The MRDB scheduler is invoked whenever a

transaction enters the system or terminates. The sched-
uler can also be invoked to resolve contention (for either
the CPU or data) when conflicts occur between transac-
tions. The first task of the scheduler is to divide the set of
ready transactions into two categories, those transactions
that are capable of meeting their temporal constraints (eli-
gible) and those that cannot meet their temporal con-
straints (ineligible). All ineligible transactions are
aborted and the MRDB client is informed of the decision.
Eligible transactions remain in the system and are eligible
for further processing. This approach differs from the
non-tardy policy [Abb92] which accepts transactions that
are currently not late, but may be in a position where it is
physically impossible to make their deadlines. Only
those transactions with feasible deadlines are considered
to be eligible. A transaction has a feasible deadline if its
deadline is less than or equal to the current time plus its
run-time estimate:

Si = 4 - (0 + 3 - 0) = 1 SI = 4 - (0+ 3) = 1

S 1 = 4 - (1 + 3 - 1) = 1 s*= 1
S 2 = 5 - (I + 2 - 0) = 2 S 2 = 5 - (1 + 2) = 2

current time (t) + run-time estimate (rte) I deadline (a)
In other words, based on the run-time estimate, there is
enough time to complete the transaction before its dead-
line. This policy can be adapted to account for the amount
of service time a transaction has already received. The
modified policy would be as follows:

current time (t) + run-time estimate(*) - p 5 deadline
(a)
where ‘p’ equals the amount of service time a transaction
has accumulated. This modified policy allows transac-
tions to be screened for eligibility during the course of
execution. Transactions that have been blocked, due to
either data or CPU contention, could be re-evaluated to
determine if they are still capable of meeting their tempo-
ral constraint. Note that the success of both of these pol-
icies is contingent on the accuracy of the run-time
estimate. Erroneous run-time estimates which over-esti-
mate the actual computational requirements will cause
transactions to be aborted needlessly. Low estimates can
degrade system performance by allowing transactions,
which in reality cannot meet temporal constraints, to com-
pete for system resources among transactions which are
trying to meet deadlines.

There are many ways for assigning priorities to
real-time tasks. Three policies extensively studied by ear-

Given: Transaction r rte d

0 3 4
1 2 5
2.5 1 6

T1
T2
T3

1 2 . 5 I S , = 4 - (2 . 5 + 3 - 2 . 5) = 1 S I = 1
> = 5 - (2.5 + 2 - 0) = 0.5 I s q = 2 I
= 6 - i2.5 + 1 - Oj = 2.5

- L ~

S3 = 6 - (2.5 + 1) = 2.5

Tl T2 TI T2 TI T2 T3 --
0 2.5 4.5 5 6 0 3 5 6

Figure 1. Continuous LS vs Static LS

541

lier researchers include First Come First Serve (FCFS),
Earliest Deadline (ED) and Least Slack.(LS) [Abb92].
The primary weakness of FCFS is that it does not make
use of deadline information. It discriminates against a
newly arrived task with an urgent deadline in favor of an
older task which may not have such an urgent deadline.
The ED policy has shown itself to be effective in certain
applications, but it fails to take into account the run-time
estimates. The LS priority assignment policy was
adopted for MRDB. The slack time for a transaction is
an estimate of how long we can delay the execution of a
transaction and still meet its deadline. It is computed by
subtracting the current time plus the run-time estimate
from the deadline of the transaction:

Slack (s) = deadline (d) - (current time (t) + run-time
estimate (rte))

The smaller the slack, the higher the priority. A
negative slack time is an indication that it is physically
impossible for the transaction to meet its deadline. This
priority assignment policy does not take the amount of
prior service time into account. The assignment of pri-
ority is static, occurring once when the transaction enters
the system. The priority computed at that time remains
with the transaction throughout its execution life. A con-
tinuous LS policy could be used which does take service
time into account. The continuous evaluation of priori-
ties causes the LS of all active transaction to be recom-
puted whenever there is contention for processor or data.
This continuous evaluation can lead to degraded perfor-
mance as shown in the simple example of Figure 1 . The
example gives the parameters for three transactions,
shows the LS computations for both continuous and
static versions, and plots their CPU usage based on those

TYPe

integer
real
real
real
real
real
real
char
char
integer
integer
char
char
real
real
real
char

priority assignments. The problem of continuous LS is
displayed with the arrival of transaction T3 at time 2.5.
The arrival of T3 causes the priority of T2 to become
higher than TI, resulting in T2 gaining control of the
CPU, and TI being blocked. This causes all three trans-
actions to miss their deadlines. The static LS version
allows all three to meet their deadlines.

A negative slack time could occur if a transaction
has already missed its deadline or is about to miss its
deadline. The possibility of a negative slack time does
not exist if a feasible deadline eligibility screening policy
is implemented, and the LS priority assignment policy is
static. The initial screening conducted to determine eli-
gibility will eliminate any transaction which cannot
physically meet their deadlines and the static LS priority
will prevent the slack associated with an eligible transac-
tion from ever becoming negative. The current MRDB
version uses static LS as the means of assigning priorities
to transactions for scheduling, in an attempt to expedite
those transactions which can least afford to be delayed.

4.2. Run-Time Estimates
Conventional real-time systems typically deal

with processes that have predictable resource require-
ments. These predictable requirements allow for a static
evaluation of computation costs. Real-time databases
normally deal with transactions which have unpredict-
able resource requirements. The random nature of such
data accesses complicates the scheduling process in real-
time database systems. A considerable amount of
research effort has been focused on real-time database
scheduling issues and the use of run-time estimates. The
use of run-time estimates in scheduling decisions have
been examined in workload screening, priority assign-

Meaning

track number
latitude of track
longitude of track
bearing from data link ref point
depth or height of platform
latitude of data link ref point
longitude of data link ref point
type of platform
category of platform
greenwich mean time
confidence of measurements
latitude direction
longitude direction
bearing minus data link ref point
speed of platform
range from ref pt in nautical miles
nuclear classification of platform

Figure 2. Attributes of the track relation

548

ment, conflict resolution and IO scheduling policies. The
results from the research conducted to date have indi-
cated that run-time estimates are a viable option for
improving scheduling decisions [Abb89, Abb92, Kim93,
Son911. The fact that critical information such as run-
time costs can improve scheduling decisions and subse-
quently overall system performance is quite intuitive.
However, the derivation of run-time estimates is not
straightforward, and have typically been derived from
simulation models. The derivation and use of run-time
estimates in a functional real-time database system has
not been appropriately explored.

One of the goals in the design of h4RDB was to
derive credible run-time estimates and to integrate those
estimates in scheduling decisions. The approach we
used was to exploit the physical characteristics of the
data (such as attribute types, number of attributes in a
relation, and the numbers of tuples in a relation) being
manipulated, along with the type of database operation
being performed (such as union, set difference and
project), in an attempt to derive credible run-time esti-
mates. While the arrival and types of transactions enter-
ing the system and the data which they access may be
random, the computation steps involved in providing the
appropriate response are not unpredictable. The steps
required to execute any MRDB command is static in
nature, and in a simplified outlook, only the number of
iterations involved is dynamic.

Operation

Project
Select
Union
Set Diff

The dynamic nature of the computation is depen-
dent on the number and types of attributes involved,
along with the number of tuples which constitute a rela-
tion. For example, the run-time cost for selecting values
from a relation consisting of only a single tuple is mini-
mal. It consists of basic start-up costs (such as transmit-
ting the command, preprocessing, opening of relations,
and reading in the data from disk), the actual computa-
tion cost in selecting that single value, and basic tenni-
nating operations (such as providing the transaction
results). The run-time cost for selecting the same set of
values from a relation of five hundred tuples entails the
same basic costs associated with opening and closing
operations for a single tuple relation, only the computa-
tion costs increase in relation to the number of tuples that
have to be processed.

Other factors such as system load and data con-
flicts do not affect the run-time costs associated with a
given transaction. Such factors only increase the compe-
tition for system resources, such as the CPU and IO
access. For example, given the cost for selecting values
from a given relation is ‘2’ time units. If half that time is
consumed, and that select operation is subsequently
blocked by a higher priority transaction whether it be for
CPU or data contention reasons, it will still require ‘1’
time unit to complete once it becomes unblocked.

With this approach, we ran numerous perfor-
mance measurements tests to capture the run-time costs.

J!@ R y i m e @@ R y i m e p le R -time le R -time

1 1.266 50 2.213 100 3.141 200 4.902
1 1.179 50 1.436 100 1.701 200 2.218
2 2.714 100 5.499 200 10.002 300 16.248
2 3.033 100 6.723 200 11.984 300 19.183

U Post & Post

time
*
c
-K -
-& -

O ! I I 1 I I

0 5 0 100 150 200 250 ## of tuples

Figure 4. MRDB run-time costs

549

The results indicate that viable run-time estimates could
be derived based on the physical characteristics of the
data being manipulated and the operation being per-
formed. The results which follow are a small extract
from those numerous run-time cost analysis experi-
ments. The results are based on database operations per-
formed on relations of the format displayed in Figure 2.
This relation represents the track data generated by the
Interim Battle Group Tactical Trainer, for an outer air
battle scenario being used at the Naval Ocean Systems
Center [But90].

4.3. Performance Results
The results of run-time estimate performance

measurements for four basic MRDB commands (project,
select, union, set difference) operating on relations dis-
played in Figure 2 are given in Figure 3, and graphically
displayed in Figure 4. The x-axis of Figure 4 is the total
number of tuples processed by the operation. The y-axis
is the total elapsed time from the start of the operation
until the final result is received at the client node. The
performance measurements were conducted in an
attempt to isolate the cost factors attributable to the oper-
ations performed, and the size of the data processed
(measured by the number of tuples in the relations). The
operations were initiated from a separate client node,
transmitted to the server node, and the appropriate results
returned back to the client. The run-time costs account
for activities from the initiation of the operation to the
receipt of the appropriate result. The results shown are
based on 200 performance measurements for each of the
operations and relation sizes shown. The large sample
measurement size was required to validate the results
produced.

The results show that the project and select oper-
ation run-time costs grow in a linear fashion in relation
to the size of the data being processed. The union and set
difference operations run-time costs grow exponentially

in relation to the size of the data being processed. The
run-time cost is the mean of the 200 performance mea-
surements. There was minimal deviation between the
mean run-time cost and the performance measurements
used in deriving the mean, usually with 90% of the per-
formance measurements falling within +lo% of the
mean. The deviation which did occur between measure-
ments can be attributed to the limited clock granularity of
the hardware involved, and to unpredictable behavior of
the underlying operating system.

Our run-time cost results did show that run-time
estimates could be derived not only based on the data-
base operation being performed and relation size, but
also on the number and types of attributes which make-
up relations. However, the results also showed that such
derived run-time estimates were heuristic in nature, and
that no guarantee could be made that a given transac-
tion's actual run-time cost would be as estimated. One of
the primary contributing factors was the support of the
underlying operating system. However, it is still possi-
ble to establish functions which generate acceptably
accurate run-time estimates based on the physical char-
acteristics of the data and the operations being executed,
and that is what is implemented in the MRDB system.

The MRDB system maintains data on the physical
characteristics of the relations in the database. When the
scheduler is invoked it extracts the physical characteris-
tics data for the relations being processed by a given
transaction. This information is used in conjunction with
the operation being performed to derive a run-time esti-
mate. The run-time estimate is subsequently used in sys-
tem scheduling decisions. An extract of system
performance measurements conducted to verify that sys-
tem generated run-time estimates closely approximated
actual run-time costs is given in Figure 5 . The solid lines
show the system generated run-time estimate for the
aggregate operations avg m a , and sum. The dashed
lines show the actual run-time costs for those operations
based on 200 performance measurements. The system

time 2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

1.4

1.3

I.'. ,
0 50 100 150 200 250

Figure 5 . Run-time estimates versus actual cost

of tuples

550

estimate closely approximates the actual cost.
While no guarantee can be made for a given trans-

action, it is possible to state that a given percentage of
transactions can complete within the run-time estimate
generated by the system. Additionally, it can be stated
that the run-time estimates generated will be within a
given percentage of the actual run-time costs. For exam-
ple, raising the system generated run-time estimates by
10% resulted in approximately 90% of the transactions
accepted for processing by MRDB having actual run-
time costs within the system generated values. The
down-side of raising the estimate is that some transac-
tions, whose actual run-time cost is below the system
generated estimate, may be needlessly aborted. The per-
centage of these depends on the tightness of the temporal
deadlines attached to the transactions.

5. Conclusions
A real-time database manager is one of the critical

components of real-time systems, in which tasks are
associated with deadlines and a significant portion of
data is highly perishable in the sense that it has value to
the system only if it is used quickly. To satisfy the timing
requirements, transactions must be scheduled consider-
ing not only the consistency requirements but also their
temporal constraints. In addition, the system should be
predictable, such that the possibility of missing a dead-
line for a given transaction can be determined prior to the
execution of that transaction or before that transaction’s
deadline expires.

In this paper, we have presented a relational data-
base manager which possesses temporal functionality,
developed for investigating real-time database issues.
Since the characteristics of a real-time database manager
are distinct from conventional database managers, there
are different issues to be considered in developing a real-
time database manager. For example, the use of run-time
estimates in scheduling policies, and the ability to place
temporal consistency constraints on database operations
are important in real-time databases. MRDB was
designed with the goal of providing an operational plat-
form for conducting research on real-time database
issues. Previous studies using simulated environments
have provided valuable information with respect to real-
time database issues. However, performance results in
some of the simulated studies are sometimes contradic-
tory with each other since they made different assump-
tions about system environments [Lee94]. We believe
that an operational environment for investigating real-
time database issues will eliminate some of the problems
associated with simulated systems and provide valuable
and applicable insights to real-time database issues.

The MRDB system is completely functional. The
foundation now exists for studying real-time database
issues in an operational environment. The results
achieved in deriving and applying heuristic run-time
estimates and the ability to attach temporal consistency
specifications are promising. However, as with any
active systems research projects, there remains many
technical issues associated with real-time database man-
agement that need further investigation. It is our goal to

facilitate further development in this area. To that end we
have oriented our work effort toward integrating and
analyzing various conflict resolution mechanisms, to
include optimistic concurrency control mechanisms
based on the notion of dynamic adjustment of serializa-
tion order [Son92, Lee931. We also plan to extend the
system to a distributed environment, capture system per-
formance measurements, and improve the temporal
functionality.

REFERENCES
[Abb89] R.Abbott, and H.Garcia-Molina, “Scheduling

Real-time Transactions with Disk Resident
Data,” Proceedings of the 15th VLDB Con-
ference, 1989.

[Abb92] R.Abbott, and H.Garcia-Molina, “Scheduling
Real-time Transactions: a Performance Eval-
uation,” ACM Trans. on Database Systems,
vol. 17, no. 3, Sept. 1992, pp 513-560.

[Ber87l P.A.Bemstein, V.Hadzilacos, and N.Good-
man, “Concurrency Control and Recovery in
Database Systems”, Addison-Wesley Pub-
lishing Co., 1987.
M. Butterbrodt, and J. Green, “DOSE: A Vi-
tal Link in the Development of a Real-Time
Relational Database Environment,” Project
Summary, Naval Ocean Systems Center, Jan.
1990.
M.J.Carey, R.Jauhari, and M.Livny, “Priority
in DBMS Resource Scheduling,” Proceed-
ings of the 15th VLDB Conference, Amster-
dam, 1989.
J. Haritsa, M. Carey, and M. Livny, “Dynam-
ic Real-Time Optimistic Concurrency Con-
trol,” IEEE Real-Time Systems Symposium,
Orlando, Florida, December 1990.

[Hua90] J.Huang, J.A.Stankovic, K.Ramamritham,
and D.Towsley, “On Using Priority Inherit-
ance In Real-Time Databases,” Dept. Com-
puter and Information Science, University of
Massachusetts, November, 1990.

[EEE93] Tenth IEEE Workshop on Real-Time Operat-
ing Systems and Software, New York, New
York, May 1993.

[Kim931 Y. Kim and S. H. Son, “An Approach to-
wards Predictable Real-Time Transaction
Processing,” Euromicro Workshop on Real-
Time Systems, Oulu, Finland, June 1993, pp

J. Lee and S. H. Son, “Using Dynamic Ad-
justment of Serialization Order for Real-
Time Database Systems,” 14th IEEE Real-
Time Systems Symposium, Raleigh-Durham,
North Carolina, December 1993.
J. Lee and S. H. Son, “Concurrency Control
Algorithms for Real-Time Database Sys-
tems,” Performance of Concurrency Control
Mechanisms in Centralized Database Sys-
tems, V. Kumar (ed), Prentice Hall, 1994.
K.Lin, “Consistency Issues in Real-Time Da-

[But901

[Car891

[Hat901

70-75.
[Lee931

[Lee941

[Lin89]

551

tabase Systems,” Proc. 22nd, Hawaii Interna-
tional Conference on System Sciences, Janu-
ary 1989.
Y. Lin, and S. H. Son, “Concurrency Control
in Real-Time Databases by Dynamic Adjust-
ment of Serialization Order,” 11th IEEE
Real-Time Systems Symposium, Orlando
Florida, December 1990.
Liu, J. W. S., K. J. Lin, andX. Song, “Sched-
uling Hard Real-Time Transactions,” 5th
IEEE Workshop on Real-Time OS and Soft-
ware, May 1988, pp 112-260.

[OZSO~O] G. Ozsovoglu, “CASE-DB: A Real-Time Da-

[Lin90]

[Lit1881

[RTA93]

[ShaSS]

[S ha9 11

[Sno87]

[Son881

[Son901

[Son911

Son921

Son931

[Stan881

tabase Management System,” Tech Rep.,
Case Western Reserve University, 1990.
IEEE Workshop on Real-Time Applications,
New York, New York, May 1993.
L.Sha, R.Rajkumar, and J.Lehoczky, “Con-
currency Control for Distributed Real-Time
Databases,” ACM SIGMOD Record, vol. 17,
no. 1, March 1988, pp. 82 - 98.
L.Sha, R.Rajkumar, S. H. Son, and C. Chang,
“A Real-Time Locking Protocol,” IEEE
Transactions on Computers, vol. 40, no. 7,

R. Snodgrass, “The Temporal Query Lan-
guage TQUEL,” ACM Transactions on Data-
base Systems, Vol. 12, NO. 2, June 1987, pp

S. H. Son, “Real-Time Database Systems: Is-
sues and Approaches,” ACM SIGMOD
Record 17, I , Special Issue on Real-Time Da-
tabase Systems, March 1988.
S. H. Son, “Real-Time Database Systems: A
New Challenge,” Data Engineering, vol. 13,
no. 4, Special Issue on Future Directions on
Database Research, December 1990.
S. H. Son, P. Wagel, and S. Park, “Real-Time
Database Scheduling: Design, Implementa-
tion, and Performance Evaluation,” The sec-
ond International Symposium on Database
Systems for Advanced Applications, Tokyo,
Japan, April 1991, pp 146-155.
S. H. Son, J. Lee, and Y. Lin, “Hybrid Proto-
cols using Dynamic Adjustment of Serializa-
tion Order for Real-Time Concurrency Con-
trol,” Journal of Real-Time Systems, vol. 4,
Sept. 1992, pp 269-276.
S. H. Son, and S. Park, “Scheduling Transac-
tions for Distributed Time-Critical Applica-
tions,’’ Distributed Computing Systems, T.
Casavant and M. Singhal (eds), IEEE Com-
puter Society, 1993.
Stankovic, J., “Misconceptions about Real-
Time Computing,” IEEE Computer, vol. 21,
no. 10, October 1988, pp. 10-19.

July 1991, pp 782-800.

247-298.

552

